New Action Plan development for Smart City Riga
Maija Rubina, REA Director

www.stepupsmartcities.eu
Europe’s new energy policy for promotion of energy efficiency

Climate change mitigation objective - >20-20-20 to 2020

Initiatives involving municipalities - Covenant of Mayors (Cities long-term sustainable energy action plan until 2020)

Signed by 5500 cities around the world, 17 from Latvia - Rīga, Jelgava, Jēkabpils, Liepāja, Jūrmala, Balvi, Ikšķile, Kārsava, Ķegums, Līvāni, Ludza, Ogre, Salaspils, Saldus, Tukums, Valka, Viļāni

- SMART CITIES and districts (Smart Cities)

• Riga signed Covenants of Mayors on 30th of September 2008 (as a first EU capital city)

• In 2010 “Riga City Sustainable Energy Action Plan 2010-2020” were approved

• Every year monitoring reports are prepared and submitted (2010, 2011)

• Every year Riga Energy Days events is organized (October)
Sustainable development in cities

City’s sustainable development ensures today’s public needs, without threats for future generation’s opportunities to satisfy their needs.

Sustainable development involves interacting public (social), environmental and economic dimensions.
SMART CITIES status

Smart cities and districts as the innovative partnership of the European Commission (EC) initiative is formulated in the EC 10.07.2012. document C (2012) 4701 final. Partnership cities and districts (cities) covers three areas - energy, transport and information and communication technologies. EC schematically represented this interaction between the smart cities as follows:
SMART CITIES status (2)

Joining the 7th Framework first call within smart city partnership municipality of Riga along with co cities - Glasgow (United Kingdom), Ghent (Belgium) and Gothenburg (Sweden) supported the international project STEP - Up (Energy Efficiency Strategic tools for urban planning) creating "Riga City Sustainable Energy Action Plan for Smart Cities 2014 to 2020" with objective to approach smart city status.
Action plan connection to Riga Council strategic planning
Actions Plan management structure

21 participant

12 participants

5 pilna laika darbinieki

16 participants
Structure of the Action Plan

- CO₂ emission analysis and forecast
 - Energy efficiency measures, energy conservation improvement
 - Renewable energy resources
 - Centralized heating
 - Energy efficiency measures
 - Housing sector
 - Public sector
 - Bin collections
 - Transport

Veicinošie pasākumi Rīčības plāna VP ieviešanai:

- Managerial structure Rīčības plāna VP ieviešanai
 - Innovative IKT energy efficiency measures improvement
 - Realization of Rīga's plan VP
 - Financial instruments Rīčības plāna VP ieviešanai
 - ES, state and local support for projects
 - Environmental improvement regulations and documents
 - Criteria Rīčības plāna VP results achievement
Action plan’s introduction part

- Progress by parts, year 2012
- Innovative Smart City projects with integrated ICT solutions

* Aims defined in Action Plan

<table>
<thead>
<tr>
<th>Pasākums</th>
<th>Ieviešanas laiks</th>
<th>Atbildīgais par ieviešanu</th>
<th>Ieviešanas apjoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Izveidot pilsētā decentralizēto siltuma avotu uzskaites sistēmu, iekļaujot tajā koksnes granulu katlu, saules kolektoru, siltumsūkņu ar dzilurbuma termozondēm, dzilurbuma ģeotermālo siltuma avotu u.c. objektus</td>
<td>2013.-2020.g.</td>
<td>REA, Sadarbības partneri</td>
<td></td>
</tr>
<tr>
<td>2. Veicināt saules kolektoru uzstādīšanu uz ēku jumtiem karstā ūdens sagatavošanai darbam sasaistē ar centralizēto u.c. veida siltumapgādes sistēmu</td>
<td>2013.-2020.g.</td>
<td>REA, Sadarbības partneri</td>
<td></td>
</tr>
<tr>
<td>3. Saules enerģijas piesaistišana karstā ūdens sagatavošanai ēkās, tūkst. MWh/gadā</td>
<td>2020.g.</td>
<td>Ēku īpašnieki</td>
<td>//____*</td>
</tr>
<tr>
<td>4. Veicināt siltumsūkņu ar dzilurbuma termozondēm uzstādīšanu ēku siltumapgādei</td>
<td>2013.-2020.g.</td>
<td>REA, Sadarbības partneri</td>
<td></td>
</tr>
</tbody>
</table>

*) minimālā, optimālā, maksimālā prognoze
Innovative Smart City projects with integrated ICT solutions (included in REA project e-catalogue)

1) Energy consumption management in multi apartment buildings
2) Energy consumption management in public buildings
3) Local biogas cogeneration with heating in greenhouse complex
4) Programmed LED city lightning with distance control function
5) Heat recover from the flue gas within district heating system
6) Automated energy consumption distance data mining within district heating system
7) E-ticket system implementation and reduced price tickets available for different social groups using public transport
8) Database for Riga living households
9) Thermal pump with heat controllers for efficient building heating
10) Automated wood chips biomass boilers with output value over 100%
11) Electric cars for municipal technical units
12) Sun battery system on building roofs over the city
13) Energy Efficiency for household using Smart technologies
14) Solar pumps for building heating
15) Heat recover from waste water in multi apartment houses
16) Smart distance controllers for electricity supply data gathering
CO$_2$ emission reduction between 1990 and 2012

1990 is the base year (reference) selected by Riga municipality un Kioto protocol guidelines. CO$_2$ emission (by defined calculation method) in Riga reached 51.85% in year 2012.

2013 - 53%. Forecast: 2020 - 55-60%; 2030 - 70%; 2050 – up-to 90%.
Electricity supply in Riga municipality is implemented by JSC “Latvenergo” using 3 main sources:

Rīgas TES-1 (modernized - 144 MW_{el.}-88%)

Rīgas TES-2 (outside Riga borders– 833 MW_{el.}-89%)

Rīgas HES (outside Riga borders– 402 MW)
Renewable energy resources produced by cogeneration stations

Cogeneration stations using biogas:

- Wastewater filtering station “Daugavgrīva” (Ltd. “Rigens”) – 2,1 MWel. (2,6 MWth)
- Ltd. “Getliņi EKO” hard-waste (sadzīves) polygon – 5,3 MWel. (6,8 MWth)

Cogeneration station using biomass (wood chips):

- HC “Daugavgrīva” – 0,6 MWel.
- HC “Ziepniekkalns”- 4 MWel. (22 MWth)
Solar energy in energy production

Monthly solar radiation total amount over North Europe (kWh/m²)

Largest solar battery is installed by Ltd “Zaļā Latvija” with total of 1200 m² (120kW)

In 2012 more then half of energy consumption was ensured using renewable energy resources
Electro energy consumption in 2012 increased by 2.6% to year 2011
Electro energy for eco-transport development

http://www.latvenergo.lv/portal/page/portal/Latvian/latvenergo/main_page/korp_atbildi/UZLADES_PUNKTU_KARTE
Fast-refuel and slow-refuel station infrastructure
Households energy consumption management system
Controllers for household energy consumption measurement
Smart controller with distance data gathering function

- All installed smart controllers maintains > 100kW
- Prior for household with energy consumption over 2500 kWh
Energy consumption for municipal lighting

<table>
<thead>
<tr>
<th>Year</th>
<th>2005.g.</th>
<th>2006.g.</th>
<th>2007.g.</th>
<th>2008.g.</th>
<th>2009.g.</th>
<th>2010.g.</th>
<th>2011.g.</th>
<th>2012.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWh</td>
<td>27.30</td>
<td>30.80</td>
<td>26.65</td>
<td>28.29</td>
<td>25.66</td>
<td>26.48</td>
<td>26.43</td>
<td>27.33</td>
</tr>
</tbody>
</table>
Municipal lighting energy efficiency increase

Riga lighting system uses single-case programming method also as implemented distance management system to control lighting intensiveness

- In 2013 amount of lightpulps reached 2000
- It is planned to install 7000 LED lighthouse pulps by year 2017
Natural gas consumption dynamics

• Natural gas consumption dropped by over 49% within 3 years period
• Also TES-2 consumption decreased by 28% over past 3 years.
Riga municipality heating 2012

Main type of heat supply - central heating 76% of total consumption;

Main fuel - natural gas;

70% of the heat supplied Riga TEC-1 and Riga TEC-2;

30% of heat developed “Rigas Siltums”:
- 5 heating plants
- 38 gas boiler houses;

90% of of heat developed within highly efficient cogeneration process;
Heat losses in heating networks reduced down to 13%.
BIOMASS - timber woodchip for heat production

The aim by year 2015 is to increase the share of biomass in the operator's fuel balance by 20%:

- 28.02.2013 fully automated bio-fuel CHP was put into operation in heating plant "Ziepniekkalns";
- On May 2013 water supply heating boilers with total heat capacity of 20 MW (110% efficiency) were put into operation water in HP "Zasulaus";
- There is a large modernization over the next several years designed for HP „Daugavgrīva“ to increase energy production efficiency (for heating boilers with heat capacity of 20 MW and condensate economizers with capacity of 1MW).
Biomass use dynamics
Energy efficiency improvement measures in the district heating system

- Condensate economizers were implemented in heat sources to recover heat from the flue gas;

- Powerful absorption-type heat pump for heat recovery from cogeneration block cooling flow was installed in heating plant "Imanta"
Energy efficiency improvement measures in the district heating system

- Condensate economizers were implemented in heat sources to recover heat from the flue gas;

- Powerful absorption-type heat pump for heat recovery from cogeneration block cooling flow was installed in heating plant "Imanta"
District heating system automated remote data reading used by “Rigas Siltums” (1)

Principle scheme
District heating system automated remote data reading used by “Rigas Siltums” (1)

86 base stations and transponders network:
Ground thermal resources
Waste and waste water as a resources for heat energy production

Biogas cogeneration polygon “Getliņi” with thermal complex (300 000 tons of waster per year)

Riga waste water filtering complex “Daugavgrīva” – 350 tonn/m³ (8-15°C) per daynigh